\qquad First \qquad
Comparing Graphs for Linear and Exponential Growth: Simple and Compound Interest

4. Which investment (simple or compound interest) is better (grows more quickly) in the long run? \qquad

Comparing Graphs for Linear and Exponential Decay: Linear and Exponential Depreciation

The value of a car decreases after it is purchased. Its value is a function of its age.
Let $\mathrm{x}=$ the age of the car in years and $\mathrm{V}=$ the value of the car in thousands of dollars ($\$ 000$)
Note Place Value: If the value is $\$ 12,000$ then $V=12$ because value is in thousands of dollars
LINEAR depreciation model: $\quad V=f(x)=15-1.0 x$
EXPONENTIAL depreciation model: $\mathrm{V}=\mathrm{g}(\mathrm{x})=\mathbf{1 5}\left(0.83^{\mathrm{x}}\right)$

1. In the table show the value of the car using both methods of depreciation.

On the grid provided, accurately graph both functions and label them f and g.

Age of Car	Value (\$000) Linear Depreciation	Value (\$000) Exponential Depreciation				
x	$\mathrm{V}=\mathrm{f}(\mathrm{x})$	$\mathrm{V}=\mathrm{g}(\mathrm{x})$	$	$	0	
:---:	:---:					
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						

2. What PERCENT of its value does the car lose each year, using exponential depreciation?
(Your answer should be a percent \%).
3. What dollar AMOUNT of its value does the car lose each year, using linear depreciation?.
(Your answer should be a dollar amount).

4 a. The car's value is decreasing faster using the exponential depreciation model, compared to the linear model between $\mathrm{x}=$ \qquad years and $\mathrm{x}=$ \qquad years,.
b the car's value is decreasing more slowly using the exponential depreciation model, compared to the linear model between $\mathrm{x}=$ \qquad years and $\mathrm{x}=$ \qquad years,.
5. Does the value of the car ever exactly reach $\$ 0$ using exponential depreciation? Explain.

