MATH 41 - 02 Precalculus $:$: Theory of Functions Fall 2019 MTWThF 08:30 AM - 09:20 AM, Room E36, CRN 21264

Email: rashidnahrin@fhda.edu, Office Phone: 408-864-8201 Office Hours: S33s Monday 12:45-3:00 PM \& Wednesday 1:25-2:30 PM Instructor: Nahrin Rashid

Prerequisite: MATH 114 or equivalent (with a grade of C or better); or a satisfactory score on the College Level Math Placement Test within the last calendar year.

Course Description: Polynomial, rational, exponential and logarithmic functions, graphs, solving equations, conic sections.

Textbook: Precalculus with Limits; $3^{\text {rd }}$ edition, by Ron Larson. ISBN: 978-1133947202
Calculator: A basic scientific calculator is required for this class such as Texas Instruments TI30XIIS Scientific Calculator. Cell phone calculators are not allowed during quizzes or exams.

Software: All homework will be done online using WebAssign. You will need to register at www.webassign.net to use this internet-based software. You will need the class key given by me in order to self-register.

Tutoring Services: Do not wait to get extra help. Contact either instructor via email or in person. The De Anza campus has a tutorial center for math students where students can get "drop in" help. Students can also register to have a regular, assigned tutor for help throughout a quarter. The tutoring center is located in room S43.

Student Conduct: Students are expected to be honest and ethical at all times in the pursuit of academic goals. Do not cheat. If you have a question during a test, you are only allowed to talk to the instructor. Anyone caught cheating on an exam will receive an automatic 0 and be reported to the Dean of the PSME Division. You can be expelled from the class and possibly from De Anza College with a grade of F if you are caught cheating.

Classroom Behavior: Math requires singular focus. I will expect your full attention during lecture and class activities. Please show courtesy for me and your fellow classmates by turning off and putting away your cell phone during class time, especially during exams. Please do not take calls or text message during class. Do not talk while fellow classmates or I are talking. Students who engage in disruptive classroom behavior will be warned by the instructor. If the disruptive behavior continues, students may eventually be dropped from the course.

Disability-Related Accommodation: If you feel that you may need an accommodation based on the impact of a disability, you should contact me privately to discuss your specific needs. Also, please contact Disability Support Services (864-8753) or Educational Diagnostic Center (864-8839) for information or questions about eligibility, services and accommodations for physical (DSS), psychological (DSS) or learning (EDC) disabilities.

Time Management: You should expect to spend at least 2 hours outside of the classroom for every 1-hour inside the classroom. This time outside of the classroom may include homework, reviewing notes, studying, and attending office hours. If you want to be successful in this class you will need to put time and effort into it.

Attendance: Students are expected to attend every class meeting. Make sure you sign the attendance roster at each class meeting. If you miss a day, it is solely your responsibility to seek out another student or myself to find out what you missed. You cannot expect to do well in the class if you fail to attend lectures.

Homework: Homework will be assigned every class meeting online and will have a due date. All homework must be submitted by 11:59PM on the due date. You must set up an account by Monday, September 29, 2019 or you will be dropped from the class. If you have a homework problem you were not able to complete, you have the next class session to ask by putting the problem on the board. At the end of the quarter your lowest homework score will be dropped. Homework will count for 15% of your term grade. Please do not procrastinate!

Quizzes: There will be a quiz every week. Each quiz will be assigned online or in-class intermittently throughout the term to test your skills on the concepts we are covering in class and online. NO make-up quiz will be given. To compensate for this, I will drop your lowest quiz score. These quizzes will count for 10% of your grade.

Midterms: I will give four in class exams during the quarter. No notes will be allowed on any exams. These exams will be completed in class and will contain the materials covered in the lectures, online, and in the book. If you are unable to take an exam for any reason, a makeup exam will not be given. In the case of a documented emergency, I will replace a missing exam score with your final exam score. These exams will count for 50% of your term grade.

Final Examination: If you do not take the final exam, you WILL NOT receive a passing grade. There will be a comprehensive final examination on Wednesday December 11 from 7:00 AM -9:00 AM. This test will count for 25% of your term grade.

Grade Breakdown:

$A+: 97-100 \%$	$B+: 87-88 \%$	$C+: 77-78 \%$	$D: 62-66 \%$
$A: 92-96 \%$	B: 82-86\%	C: 69-76\%	D-: 60-61\%
A-: 89-91\%	B-: 79-81\%	D+: 67-68\%	F: < 60\%

Important Dates:

- The last day to add classes is Saturday, October 5.
- The last day to drop for a full refund and no record of "W" is Sunday, October 6.
- The last day to request pass/no pass grade is Friday, October 18. The last day to drop with a "W" is Friday, November 15

Tentative Schedule for Math 41, Fall 2019

Week	Monday	Tuesday	Wednesday	Thursday	Friday
1	September 23 Syllabus	September 24 Appendix A. 5	September 25 Appendix A. 5	September 26 Appendix A. 6	September 27 Appendix A. 6
2	September 30 Appendix A. 6	October 1 Section 1.2	October 2 Section 1.3	October 3 Section 1.4	October 4 Section 1.4
3	October 7 Section 1.5	October 8 Section 1.5	October 9 Section 1.6	October 10 Section 1.6	$\begin{gathered} \text { October } 11 \\ \text { Exam } \mathbf{1} \\ \text { (A.5, A.6, 1.2-1.5) } \end{gathered}$
4	October 14 Section 1.7	October 15 Section 1.7	October 16 Section 1.8	October 17 Section 1.8	October 18 Section 1.9
5	October 21 Section 1.9	October 22 Section 1.10	October 23 Section 2.1	October 24 Section 2.1	October 25 Section 2.2
6	October 28 Exam 2 (1.6-1.10)	October 29 Section 2.2	October 30 Section 2.3*	October 31 Section 2.5	November 1 Section 2.5
7	November 4 Section 2.6	November 5 Section 2.6	November 6 Section 2.6	November 7 Section 2.7	November 8 Section 2.7
8	November 11 Veterans Day Holiday	November 12 Section 3.1	November 13 Exam 3 (2.1-2.7)	November 14 Section 3.1	November 15 Section 3.2
9	November 18 Section 3.2	November 19 Section 3.3	$\begin{gathered} \text { November } 20 \\ \text { Section } 3.3 \end{gathered}$	November 21 Section 3.4	$\begin{gathered} \text { November } 22 \\ \text { Section } 3.4 \end{gathered}$
10	November 25 Section 3.5	November 26 Section 3.5	$\begin{gathered} \text { November } 27 \\ \text { Exam } 4 \\ \text { (3.1- 3.5) } \\ \hline \end{gathered}$	November 28 Thanksgiving Holiday	November 29 Thanksgiving Holiday
11	December 2 Section 10.2	December 3 Section 10.3	December 4 Section 10.4	December 5 Section 10.4	December 6 Final Review
12	December 9 No class	December 10 No class	December 11 Final Exam 7:00-9:00 AM	December 12 No class	December 13 No class

This syllabus is subject to change at the instructor's discretion.

In §2.3, synthetic division is optional*

Student Learning Outcome(s):

*Investigate, evaluate, and differentiate between algebraic and transcendental functions in their graphic, formulaic, and tabular representations.
*Synthesize, model, and communicate real-life applications and phenomena using algebraic and transcendental functions.

