CRN (13801) Math 1C-51Z Calculus Instructor: Bijan Sadeghi Asynchronous Office Hours: Email me on Canvas Academic Term: Summer 2025 E-Mail: sadeghibijan@fhda.edu

Textbook: Calculus: Early Transcendental; 9th ed., by James Stewart. Your textbook should include a Webassign access code. If not, you must purchase one separately.

Prerequisite: Math 1A & 1B or equivalent (with a grade of C or better).

The basic content of this course covers Parametric Equations & Polar Coordinates; Infinite Sequences & Series; Vectors & the Geometry of Space; Vector–Valued Functions. Two of the chapters (Parametric & Vectors) are virtually all algebra, but there is some calculus related to area and arc-length. Sequences/Series is the essential theory of understanding how a calculator/computer computes virtually all the various mathematical functions (logarithms, trig, etc.). Your knowledge of limits is very crucial to this lengthy chapter. Vector-Valued Functions does indeed bring us back to derivatives and integrals.

Keep in mind: many colleges on a semester system have two semesters of calculus to make up a full year of calculus, whereas those schools (De Anza/Foothill, others) on a quarter system use three quarters to make a full year of calculus. Guideline: wherever you begin your calculus sequence is where you should finish that sequence. Transferring between semester and quarter systems during the calculus sequence can create problems of missed material /information.

Attendance: Not required. Course is asynchronous.

Cheating: Cheating is forbidden. There shall be no talking to, or unauthorized helping of other students, or copying from or looking at another student's paper during exams. A class/course grade of "F" will be given for any of the above infractions. **Homework:** All the homework will be done online. Once you have your webassign access code, go to www.webassign.net, log-in and register, and enter Class Code:

deanza 16715379

Quizzes: There will be weekly quizzes held on Mondays; time TBD.
Exams: Two exams will be given during the quarter. No Make Ups.
Final Exam: A two-hour comprehensive final exam will be given on Friday, August 8th; time TBD. This exam is a must. A grade of "F" will be assigned to those who miss the final exam.

June	June 30 -	July 1-	July 2 -	July 3 -	July 4 -
	Ch. 10	Ch. 10	Ch.10	Ch. 10	Holiday
July	July 7 -	July 8 -	July 9 -	July 10 -	July 11-
	Ch. 10	Ch. 11	Ch, 11	Ch. 11	Exam 1
July	July 14 -	July 15 -	July 16 -	July 17-	July 18-
	Ch. 11	Ch. 11	Ch. 11	Ch. 11	Ch.11
July	July 21-	July 22 -	July 23 -	July 24 -	July 25-
	Ch. 11	Ch. 11	Ch.12	Ch. 12	Exam 2
July	July 28 -	July 29 -	July 30-	July 31 -	Aug. 1-
	Ch. 12	Ch. 12	Ch. 12	Ch. 13	Ch.13
August	August 4 -	August 5 -	August 6 -	August 7 -	Aug. 8-
	Ch. 13	Ch. 13	Ch. 13	Ch.13	Final Exam

Grading:

Homework	200 points
Exams (2)	200 points
Quizzes	100 points
Final Exam	200 points

Total 700 points

Percentage	Grade
[95-100]	"A+"
[90-95)	"A"
[88-90)	"A-"
[85-88)	"B+"
[80-85)	"B"
[77-80)	"B-"
[72-77)	"C+"

[65-72)	"C"
[61-65)	"D+"
[57-61)	"D"
[55-57)	"D-"
[0-55)	"F"

Important dates

For deadlines to drop with a refund and without and with a "W" grade, go to MyPortal > Students Tab > My Courses> View your Class Schedule. Dates are enforced.

Student Learning Outcome(s):

• Analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.

• Apply infinite sequences and series in approximating functions.

• Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.